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Uridine Insertion/Deletion RNA
Editing as a Paradigm for Site-specific
Modifications of RNA Molecules
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A SENSE OF WONDERMENT AT THE VARIETY, complexity, and beauty of
natural phenomena is, I believe, the defining characteristic of our species.
I wonder at the very existence of the universe, at physical laws and what
they mean, and at the marvelous emergent properties in the complexi-
ties of living systems. In particular, the trypanosomatid protists caught
my imagination many years ago and never let go. Wonder after wonder
emerged from the study of these creatures, with the most striking being
RNA editing. Uridine insertion/deletion RNA editing was discovered by
Benne et al (1986). Four non-encoded U’s were found in the mRNA at
the site of an evolutionarily conserved frameshift in the cytochrome
oxidase subunit 11 gene which was encoded in the maxicircle mitochon-
drial DNA of trypanosome protists. Subsequent examples encompassed
different trypanosome species and genes and included multiple U-insertions
and U-deletions (Feagin et al. 1988; Shaw et al. 1988, 1989; Van der Spek
et al. 1988), including the dramatic case of the pan-edited genes in which
hundreds of U’s were inserted and deleted at hundreds of sites through-
out the gene (Bhat et al. 1990; Koslowsky et al. 1990; Maslov et al. 1992).
The mechanism of editing began to be revealed upon discovery of short
guide RNAs (gRNAs) encoded both in the maxicircle DNA and in the
thousands of catenated minicircle molecules; the gRNAs were perfectly
complementary to completely edited mRNAs (Blum et al. 1990; Blum and
Simpson 1990; Pollard et al. 1990; Sturm and Simpson 1990). Based on
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the presence of a short complementary sequence (anchor sequence) just
downstream of the 3'-most editing site, a model was proposed in which
there is an initial endonucleolytic cleavage of the pre-edited mRNA at the
first mRNA/gRNA mismatch followed by either an addition of U's to the
3’ end of the 5 mRNA fragment, which then can base-pair with the guid-
ing nucleotides in the gRNA, or a deletion of unpaired U’s from the 3’
end of the 5 fragment, and finally a religation of the mRNA fragments
(Fig. 1A=D) (Blum et al. 1990). The enzymatic machinery was proposed
to translocate to the next upstream mismatch, and the entire cycle would
be repeated. The observed overall 3" to 5" polarity of editing in multiple
gRNA-mediated editing domains was neatly explained by the creation of
the upstream anchor sequences by downstream editing (Maslov and
Simpson 1992).

This model has been subsequently experimentally confirmed in
essentially all details (Seiwert and Stuart 1994; Byrne et al. 1996; Cruz-Reyes
and Sollner-Webb 1996; Seiwert et al. 1996), with the exception that
there appear to be separate but interconnected enzymatic pathways for
U-insertion and U-deletion sites (Cruz-Reyes et al. 1998a,b, 2002). In the
last few years, many of the proteins involved in this process have been
identified, and progress has been made toward understanding structural
and enzymatic details (Stuart et al. 2002; Simpson et al. 2003, 2004;
Worthey et al. 2003). Despite this progress (or perhaps as a result of this
progress), | still maintain a child-like fascination with this very successful
but apparently unique evolutionary adaptation for gene regulation:
How did it evolve, why is it still maintained, and why is it restricted to
trypanosomes?

Figure 1. Mechanism of RNA editing. (A-D). Model for U-insertion editing and
U-deletion editing. The arrows indicate enzymatic activities participating in the reac-
tion, with the name of the enzyme (if known) in parentheses. The gRNA/mRNA
anchor duplex is indicated, as is a putative duplex formed by the gRNA 3' oligo U tail
and the GA-rich pre-edited region of the mRNA (Blum and Simpson 1990; Leung
and Koslowsky 1999, 2001a,b). (A) The initial annealing of the pre-edited mRNA and
the cognate gRNA, and the initial cleavage at the first mismatch. (B) 3’ addition of
U’s to the 5' cleavage fragment, which base-pair with three guiding A's in the gRNA
(U-insertion). (C) Trimming of 3’ non-base-paired U’s from 5’ cleavage fragment
(U-deletion). (D) Ligation of the 5" and 3' cleavage fragments to extend the anchor
duplex by three base pairs (U-insertion). Ligation of the two fragments in U-deletion
editing is not shown. (E) RNA substrates for the precleaved in vitro editing assay. In
the +2 U-insertion substrate, two guiding nucleotides for the insertion of two U’s
are in bold caps. In the —2 U-deletion substrate, the two U’s to be deleted are shown.
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In this chapter I review recent advances in our knowledge of the
biochemistry and molecular mechanisms of this process and also speculate
on the biological significance of this and related phenomena.

IN VITRO EDITING ASSAYS

In the case of the African trypanosome, Trypanosoma brucei, a gRNA-
directed in vitro editing assay at a single site has been utilized extensively
(Cruz-Reyes and Sollner-Webb 1996; Seiwert et al. 1996). The RNA
substrate, transcribed in vitro using phage T7 RNA polymerase, usually
contains the first and second editing sites of the ATPase subunit 6 (A6)
pre-edited mRNA. The reaction is “full round” in that there is a site-directed
cleavage followed by either U-addition or U-deletion and RNA ligation,
depending on the specific gRNA sequence. However, there is little or no
processivity with regard to adjacent upstream editing sites. In addition,
there are no reports of processivity involving overlapping gRNAs.

The “enzyme” used was either the ~208S glycerol gradient fraction of
a clarified mitochondrial lysate or equivalent column-fractionated lysate
fractions (see below). The maximum yield of edited RNA was very low
(~1-2%). Modification of the gRNA sequence led to a substantial
enhancement of the in vitro U-deletion reaction efficiency to ~60% con-
version of input into edited product (Cruz-Reyes et al. 2001), but no equiv-
alent enhancement of the U-insertion reaction has been reported. Increasing
the “tether” duplex (i.e., the duplex produced by annealing the gRNA with
the pre-edited region upstream of the editing site) did increase U-insertion
activity somewhat while it decreased U-deletion activity. A substantial
increase in the efficiency of full round in vitro editing was obtained in the
Leishmania system by providing the gRNA in cis at the 3’ end of the mRNA
and stabilizing the tether duplex (Kapushoc and Simpson 1999).

In the case of the lizard parasite, Leishmania tarentolae, initial reports
indicated that the efficiency of full round editing was extremely low,
forcing the use of RT-PCR to amplify the signal (Byrne et al. 1996). Using
this method, there appeared to be a background of gRNA-independent
U-insertion in addition to the precise gRNA-mediated insertions.
However, Pai et al. (2003) utilized in vitro selection-amplification to obtain
modified mRNA and gRNA sequences that mediated efficient full cycle
editing by column fractionated mitochondrial extract, suggesting that the
rate-limiting step is the specific editing RNA substrate.

A major technological improvement was the “pre-cleaved” assay
developed by Igo et al. (2002), which bypasses the requirement for the
initial nuclease cleavage by providing two pre-edited mRNA cleavage
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fragments bridged by a cognate gRNA; the gRNA either contains guiding
nucleotides and mediates U-insertions, or it lacks guiding nucleotides
and mediates U-deletions (Fig. 1E). The yield of edited products is more
than 50% of the input. This assay has been extensively used to examine the
editing reaction using both T. brucei and L. tarentolae enzyme fractions.

THE ~20S RNA LIGASE-CONTAINING COMPLEX

The RNA ligase-containing core-editing complex from trypanosomatid
mitochondria was first identified as a single auto-adenylated high-
molecular-weight band in a native gel (Peris et al. 1997; Rusché et al.
1997), with the REL1 and REL2 ligases (Sabatini and Hajduk 1995)
representing the adenylated components. This complex has been labeled
the L-complex or “editosome” in different labs (Simpson et al. 2004). We
argue for the former operational nomenclature, reserving the latter for
the yet poorly characterized RNA-mediated super complex (see below).
The L-complex, which sediments in glycerol gradients at approximately
20-258, has been reported to contain from 7 (Rusché et al. 1997) to over
20 polypeptides (Panigrahi et al. 2003), but there is currently a general
consensus that there are ~16 polypeptide components (Aphasizhev et al.
2003¢) which are in approximately equimolar stoichiometry. However,
the relative amounts of different components vary with the isolation
technique, suggesting a somewhat loose or dynamic interaction. RNase
predigestion of the mitochondrial lysate prior to gradient separation of
the L-complex had no effect on the S value or polypeptide composition
of the native gel band, indicating that the complex is stabilized entirely
by protein—protein interactions (Aphasizhev et al. 2003c).

The cleanest method to isolate the L-complex uses epitope tagging of
component proteins which, when expressed and targeted to the
mitochondrion, allow affinity isolation of the complex from isolated
mitochondrial fractions. Several different TAP-tagged L-complex proteins
were expressed in L. tarentolae and integrated into the L-complex, and
each yielded approximately the same polypeptide profile (Fig. 2)
(Aphasizhev et al. 2003c). The presence of both the tagged and the
endogenous proteins in the pull-down material suggested a dimeric
organization of the L-complex, but this remains to be firmly established.

Proteins from such isolations were subjected to mass spectrometry
for gene identification (Panigrahi et al. 2003; Worthey et al. 2003; Simpson
et al. 2004). Several sequence motifs could be identified that suggested
biological roles for specific proteins, but as yet only a few have been
expressed and characterized. These include the REL1 and REL2 RNA
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Figure 2. SDS gel of TAP-isolated L-complex from L. tarentolae. Stained with Sypro
Ruby. Bands are indicated by both the 1L.C and MP nomenclatures, and those with
known enzymatic activity are indicated. The CBP-tagged REL1 protein used for the
pull-down is indicated by an open arrow. (Modified, with permission, from Aphasizhev
et al. 2003¢ [@MacMillan].)

ligases (McManus et al. 2001; Rusché et al. 2001; Schnaufer et al. 2001),
the RET2 3" TUTase (Aphasizhev et al. 2003¢; Ernst et al. 2003), and the
REX1 and REX2 3’5" exonucleases (Kang et al. 2005). In addition,
there are several proteins with RNase III motifs, several with single-
strand-binding motifs, and a group of proteins with zinc finger motifs
(Simpson et al. 2004).

EXPRESSION AND CHARACTERIZATION OF THE RELT AND REL2 RNA
LIGASES, THE REX1 EXONUCLEASE, AND THE RET2 3’ TUTASE

L. tarentolae REL1 and REL2 and T. brucei REL1 were expressed in insect
cells using the baculovirus system (Gao et al. 2005). The recombinant
proteins were enzymatically active and showed similar K,,, values for the
RNA substrate in the 100 nM range. RNAi down-regulation of REL1 in
T. brucei was lethal but did not affect the stability of the L-complex,
whereas down-regulation of REL2 had no phenotype. The REL1-depleted
L-complex had reduced activity for both U-insertion and U-deletion
editing of a precleaved RNA substrate in vitro (Gao and Simpson 2003).

The L. tarentolae LC-2 (MP100) (Kang et al. 2005) and the T. brucei
MP100 (LC-2) and MP99 (LC-3) (K. Rogers and L. Simpson, unpubl.) pro-
teins were also expressed in insect cells. All recombinant proteins showed
3" to 5' exonuclease activities specific for single-stranded 3" oligo U over-
hangs. These were therefore renamed RNA-editing exonuclease 1 and 2
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into the L-complex. This complementation assay, combined with muta-
genesis of the recombinant protein, allowed the localization of the region
of REL1 that interacts with the L-complex to within the nonenzymatic
carboxy-terminal 90 amino acids (Gao et al. 2005). The assay should be
useful for investigation of the role of specific motifs in these proteins.

THE ENDONUCLEASE INVOLVED IN THE INITIAL CLEAVAGE
OF THE MESSENGER RNA AT THE EDITING SITE

Piller et al. (1997) identified an RNA cleavage activity that co-sedimented
with the L-complex and had the characteristics predicted for an editing
nuclease, but this activity has not yet been localized to any specific
L-complex protein. Cruz-Reyes et al. (1998b) showed that cleavage at
U-insertion and U-deletion sites may involve different enzymes, since the
former is inhibited by ATP and ADP whereas the latter is stimulated by
ATP and ADP.

No cleavage activity could be detected in L. tarentolae 20S fractions
by direct analysis (Alfonzo and L. Simpson, unpublished results). How-
ever, Pai et al. (2003) could directly detect specific cleavage activity in
Leishmania fractions using an mRNA/gRNA substrate derived by in vitro
selection.

The most likely candidates for the nuclease(s) are one or more of the
proteins containing RNase III motifs—LC-6A (MP61), LC-8 (MP44),
MP67, and MP90—Dbut recent work indicates that the zinc finger-
containing protein, MP42 (LC-7B), exhibits exonuclease and endonuclease
activities (Brecht et al. 2005), so this remains an open question.

THE RET1 3’-TERMINAL URIDYLYL TRANSFERASE ADDS U’'S TO THE
GUIDE RNA 3’ END AND IS PRESENT IN A SEPARATE COMPLEX

In addition to the 3" U’s that are added to the cleaved pre-mRNA and
subsequently inserted, 3" U’s are also added to the gRNAs (see Fig. 1).
These do not appear to be incorporated into editing sites but may be
required for the interaction of the gRNA with the cleaved mRNA fragment.
Since there are two 3’ TUTase enzymes, RET1 and RET2, the question
arises as to the specific role of each enzyme. The RET1 3’ TUTase was
expressed in active form in E. coli and characterized in detail (Aphasizhev
et al. 2002; Aphasizheva et al. 2004). The recombinant enzyme added
multiple U’s to the 3" end of RNA substrates. During the course of the
biochemical isolation of this enzyme from L. tarentolae mitochondria, a
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minor peak of activity was noted in an ion exchange fractionation
(Aphasizhev et al. 2002). This peak contained L-complex material, as
shown by migration of an autoadenylated band in a native gel, and in
addition contained a ~700-kD band that reacted with anti-RET1 antibody.
Native recombinant RET1 was tetrameric, but in mitochondrial lysates a
number of higher-molecular-weight RET 1-containing bands were observed,
including one corresponding to the 700-kD complex which survives
ion exchange chromatography. The latter was operationally named the
RET1 complex.

THE MRP RNA-BINDING RNA CHAPERON COMPLEX

The MRP1 and MRP2 mitochondrial RNA-binding proteins have been
identified in several trypanosomatid species (Koller et al. 1997; Lambert
et al. 1999; Blom et al. 2001; Aphasizhev et al. 2003b). These proteins
bound single-stranded and double-stranded RNA in the nanomolar
range and could stimulate RNA annealing 20- to 70-fold (Muller et al.
2001; Aphasizhev et al. 2003b). The proteins were present in mitochon-
drial lysates as a stable heterotetramer. RNAi down-regulation of expres-
sion of MRP1 and/or MRP2 has been reported (Vondruskova et al. 2004).
Loss of MRP1 produced little effect on cell growth, but loss of MRP2 was
lethal (Vondruskova et al. 2004). Differential effects were observed on the
extent of editing of different mRNAs, leading to the suggestion that these
proteins play a regulatory role in the editing of specific transcripts.

RNA-DEPENDENT INTERACTIONS OF THE L-COMPLEX:
THE RET1T COMPLEX AND THE MRP COMPLEX

The MRP RNP complex was shown to interact with both the L-complex
and the RET1 complex in an RNA-dependent manner (Aphasizhev et al.
2003b). L. tarentolae were transfected with MRP1-TAP, and mitochondrial
lysates were analyzed by gradient sedimentation, autoadenylation, and
western analysis. Substoichiometric amounts of REL1, REL2, and RET1
were detected in the 20-30S region together with the MRP RNP com-
plex. Pretreatment of the lysate with RNase removed the co-sedimenting
MRP complex, suggesting that RNA linkers were required for the main-
tenance of this interaction.

A substoichiometric amount of RET1 was also immunologically
detected in TAP-isolated ~20S L-complex from L. tarentolae (Aphasizhev
et al. 2003¢). Predigestion of the lysate with RNase led to a loss of this
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material, indicating that the linkages between RET1 and the L-complex
contained RNA. There was no effect of RNase on the S value or polypep-
tide composition of the L-complex eluted from the native gel.

From these data we proposed that the functional editing supercomplex
consists of at least three independent entities, the L-complex, the MRP
complex, and the RETI complex, interacting via RNA linkers, as
diagrammed in Figure 3 (Simpson et al. 2004). The nature of these linkers
is not yet established, but the most likely candidates are gRNAs and the
annealed cognate mRNAs. Additional factors such as the mHel61 RNA
helicase (Missel and Goringer 1994; Missel et al. 1997) and other proteins
(Madison-Antenucci et al. 1998; Vanhamme et al. 1998; Pelletier and

RET1
complex

Figure 3. Model of organization of editing RNP supercomplex. The RET1 complex
is involved with maintaining the oligo U tail of the gRNAs, and the MRP complex
is tentatively shown as involved with catalyzing the annealing of the mRNA and
gRNA. The cytochrome pre-edited mRNA is shown annealed with the Cyb gRNA-
I1. The folding was made using MFold. (PER) Pre-edited region. The number of U’s
inserted at each editing site are indicated, as is the 5" anchor helix. The black arrow
indicates the start of the oligo U tail, Guiding nucleotides in the gRNA are circled.
The mRNA/gRNA fold is reprinted, with permission, from Blum and Simpson (1990
[©Elsevier]).
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Read 2003) found to be associated with gRNAs and mRNAs may also be
associated with the functional editing machinery, but this remains to
be investigated.

SUMMARY AND CONCLUSIONS

A great deal of progress has been made on the molecular mechanism of
U-insertion/deletion RNA editing in the last few years, but much
remains to be clarified. Much progress has been made in the biochemical
dissection of the editing apparatus by combining the power of affinity
tagging with mass spectrometry and the availability of the genome data-
bases, but the precise biological roles and interactions of the variety of
proteins in the L-complex are still largely unknown. In addition, the
nature and composition of the RET1 complex which is responsible for
maintaining the length of the 3’ oligo U tails of the gRNAs are still
obscure. Furthermore, the mechanism determining processivity of editing
has not been defined, either processivity within a gRNA-mediated block
from site to site or within a multiple gRNA-mediated domain from block
to overlapping block. A beginning has been made on reconstruction of
editing activities using recombinant proteins, but progress is dependent
on developing more efficient assays for partial reactions of editing.

SPECULATIONS: URIDINE INSERTION/DELETION RNA EDITING
AS A PARADIGM FOR SITE-SPECIFIC MODIFICATIONS OF
RNA MOLECULES IN GENERAL

The term, RNA editing, was first used for the U-insertion/deletion editing
of mRNAs in trypanosomatid mitochondria (Benne et al. 1986) but was
subsequently used to describe a variety of post- and co-transcriptional
RNA modifications such as the site-specific cytidine deamination in the
apoB mRNA in mammals (Bostrom et al. 1989) and the adenosine deam-
inations in certain nervous system-related mRNAs in mammals (Sommer
et al. 1991) and insects (Palladino et al. 2000), the co-transcriptional
addition of G residues in negative-strand RNA viruses (Vidal et al. 1990)
and the apparently co-transcriptional insertion of multiple cytidine
residues in Physarum mitochondrial RNAs (Mahendran et al. 1991; Byrne
and Gott 2002). Always lurking in the historical darkness was the specter
of the many highly conserved but functionally enigmatic nucleotide
modifications found in eukaryotic and archaeal ribosomal RNAs and
tRNAs (Decatur and Fournier 2002).
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majority of cases involves simple base-pairing by trans- or cis-acting
molecules. True, there are some cases in which nucleic-acid-binding
proteins alone determine site specificity, but these are becoming a real
minority. The existence of indiscriminate RNA and DNA editing merely
strengthens the argument that specific editing requires base-pairing.

In any case, since language is neither true nor false but simply a
device to communicate more effectively, it may help in the understanding
of all these diverse phenomena to use a common designation based on a
common mechanism of site determination.
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